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Nonlinear Excitations in Hydrogen-Bonded Chains
with Anharmonic Interatomic Interactions
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We discuss the nonlinear excitations and the motion of a kink soliton pair in hydrogen-
bonded chains with anharmonic interatomic interactions, based on a two-component
soliton model, using a direct perturbation method. The expression for the asymmetric
solutions of the kink soliton pair is found because of anharmonicity, and the energy, the
momentum and the effective mass of a kink pair for cubic and quartic anharmonicity
are calculated, which are in good agreement with the experimental data.
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1. INTRODUCTION

It is well known that hydrogen-bonded chains consisting of hydrogen bonds
occur in many solid state systems and living systems, such as, for example, solid
alcohol, carbon hydrates, proteins, and ice. In the case of studies of proton transfer
processes in hydrogen-bonded systems, for example, in ice, water, or proteins, the
one-component soliton model for proton transport in hydrogen-bonded molecular
chains has been investigated by a number of authors (Kashehati, 1982;

Xu, 1990). In the normal state of a chain each proton is linked to a heavy ion
(or oxygen atom in ice) by a covalent bond in one case, or a hydrogen bond in
the other. Therefore, there are two kinds of arrangements of hydrogen-bonded
states in these systems, namely the typetX. - - X—H...X—H...X—H and

the type HX..-H—X...H=X...H—X, where — indicates a covalent bond,
and- - - represents a hydrogen bond. Obviously the two states should have the
same energy. In such a case it is accepted that the potential energy of the proton
should have the form of a double well with two minima corresponding to the two
equilibrium positions of a proton between two neighboring heavy ions (or oxygen
atoms). Inthe usual case, the protons in the hydrogen bonds are subject to harmonic
vibration about their equilibrium positions.
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Considering the influence of the motion of the heavy-ion sublattice on the
proton sublattice, the two-component soliton model was suggested by Xu (1992)
and Xu Huang (1995). This model considers that the nonlinear excitations in the
proton and the heavy-ion sublattices are all kinks, kink pairs have symmetric solu-
tions in the harmonic interatomic interactions approximation (Xu, 1992). However
it does not explain the asymmetry observed experimentally between the structures
of L and D defects (Pnevmatikes al., 1989) and the differences observed exper-
imentally between the mobilities of OHand HO™ defects (Nagle and Nogle,
1983), which correspond to kink and antikink solitons in this model.

Because the heavy ion sublattice is not an ideal simplex atomic lattice. The
heavy ion has an internal vibration, as for example the amide-I vibration in the
peptide group ak-helical protein (Xu, 2000; Xu and Zhou, 1996) and the vibration
of the oxygen ion in ice. In the present paper, taking into account the anharmonic
interatomic interactions of the two sublattices, on the basis of the two-component
soliton model, we discuss the nonlinear excitations due to anharmonicity and can
account for the asymmetry feature in hydrogen-bonded chains. The energy, the
momentum, and the effective mass of a kink pair due to anharmontcity are found,
which agree with the experimental data (Nagle and Nagle, 1983; Pnevmatikos
et al, 1989).

2. KINK SOLITON PAIR

In the continuum model for the two-component soliton of the hydrogen-
bonded molecular chain, the Hamiltonian of the system is (Xu, 1992).

H= IE / [%m(ut2 + cjuZ) + %M (W7 + vdwZ) + V(u) — kwy (u? — ug) | dx
1)
Here,l is the lattices spacingi(x, t) andw(x, t) are the displacement fields of
the proton (masm) and the heavy ion (madd); respectivelycy, andvg are the
characteristic velocities of the proton and the heavy-ion sublattices, respectively.
k is the coupling constant between the two sublattices.

u?\?

VW = (1-5) @
Ug

is the proton potential energy in each hydrogen bagds the barrier heightyg

is the distance between the central maximum and one of the minima of the double

well. The Euler—Lagrange equations of motion corresponding to Eq. (1) are as

follows.

2k
Upt — CoUxx — U+ V'(u) =0 (3)
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2k
Wit — UaWxx — U= 0 (4)

Considering anharmonic interatomic interactions in the two sublattices, gen-
erally,U (ux) andP(wy), which are the interaction potentials in the proton and the
heavy-ion sublattices, respectively, may be written as (Davydov, 1991).

U = 5mE — 119(u) 5)

1
U(wy) = > MUSWf + A2p(Wy) (6)

Wherei; andi, represent a small constant parameter,laful,) and P (wy)
account for anharmonic interatomic interactions in the proton and in the heavy-
ion sublattices, respectively. Replacing the model parameters in Eq. (1) by the
corresponding parameters in Egs. (5) and (6), we get the Hamiltonian of the an-
harmonicity,

1 1 1
H= T / [émLf + U (uyx) + V(u)é MWZ + P(wy) — kwy (u? — ug)] dx (7)
The equations of motion corresponding to the Hamiltonian (7) are

2k
M — UM (U)Uxx — —UP'(Wy) + V'(u) = 0 (8)
Mug

/ 2k
Mwit — P"(Wx)Wxx — —=uU’(ux) =0 (9)
Mc;

Wheni; =0 andx, =0, Egs. (8) and (9) reduce to Eqgs. (3) and (4), re-
spectively, that is, in the harmonic interatomic interactions approximation, the
symmetric solutions of kink pair in the following form (Xu, 1992).

u=oup tanh[\/g(x — vt)] (10)

w = Du (11)
Here,oc = +1 is the polarity of soliton, and

1 4eo 2k2U2
_ _ 12
e ey [ 2 M=) (12)

\/zkail/ZUO
M (US — U2)

Equation (10), (11), and (13) show that, in the case vg andv < cy, if the
nonlinear excitation in the proton sublattice is the kink (antikink), then the nonlinear

D=-— (13)
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excitation in the heavy-ion sublattice is the antikink (kink). They propagate alone
the hydrogen-bonded chains in pairs with the same velocity.

3. THE ASYMMETRIC SOLUTIONS OF THE KINK PAIK

When the perturbation is included,(# 0, A, #£ 0), it is usually impossible to
obtain on exact analytical solutions of Egs. (8) and (9), we use a direct perturbation
method, and assume that the solutions of Egs. (8) and (9) have the following form
(Braun and Vazquez, 1991).

u() = uo(§) + re(§) (14)
w(§) = Du(é) (15)
wheret = x — ut, ug(§) is the kink of the unperturbed system+£ 0) inthe proton

sublattice. Usingl = v2Ugg, Uxx = Uge, U (Ug) = 3mc3u? + A19(Ug), P(we) =
3MuZcZ + hap(We), and substituting Egs. (14) and (15) into Eq. (8), we obtain
/! 2k / /
—MGy PUge — 219" (Ug)Ugs — vz P (Wg) +V'(u) =0 (16)
0
Multiplying Eq. (16) byu, and integrating over<{oo, &), we have

3 &
/ —m((z))/_zl,lgg - Ug d%‘ — / )ng//(Ug)Ugg - Ug d%‘

& ook £ dv(u)
—[m lvlvéuP(wg)-ugdé—1—/00 qu usdé =0 a7
we let
£
s= [ g'ueus uede = urg(ue) - o(ue) (18)
£ ook K
8= /_oc M—UguP(wg)ug dg = MvguzP (We) (19)
and we have
4 1
/ —m(%)/_zl.lgg - Ug dé = —Em(ﬁy_zug (20)
£
/ d\éﬁ”) Ug d& = V(u) 1)

Inserting Egs. (18)—(21) into (17), we obtain

_%m(éy_zug M@+ 5% +V(U) =0 22)
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here

=58/(MGr), rA=xr/(MG), v = (1— Z—(;)_l/z,

Substituting Eqg. (14) into Eq. (22), and using the expansion

V(Uo + Ap) & V(Uo) + AV'(Uo)e (23)
and
V(uo) = —m%y’zuo (24)
we come to the following first-order equation
Yy 2Upe’ —y PUgp = —(s+9) (25)
From Eg. (25) we get
S + 8
o =y [ I (26)

The result (26) describes a correction to the kink shape due to the anharmonic
interatomic interactions, considering the cubic and quartic anharmonicity in the
proton and in the heavy—ion sublattices, respectively,

1 1
20(Uye) = = klu + zkzu;‘:éklungéklug‘ 27)
A —k314—1k314 28
2p(Wx) = 5 3Wy + 1_2k4Wx =5 aWe + ék4wg (28)

wherek; — k4 are the anharmony parameters, we have

)»13

1 /1 1
i = 05 = g0 ool = g (i + gt

, S+ 8* —Asy? o[ A8y
Lp(£) = Aug %dé— /u—/zyds"‘uo/szds
0

0
where
. [ —rsy? —y2uy 1 ( 1
u ———d£ = koud ku d
0/ u2 3 ma Uz + ke §

Y

_VUO 1 1 /4)
ku + -kouy ) d

ma uo< o + Z¥allz §

—y“u i
= 0 <§klu0 + Zkzu()) dg

2
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/ugdg = /\/gauo sechf [\/g(x—ut)] dé = 20up
fugdé =/ —o?u3 secht [[(x—ut)]dg_i 12,

we further get

—Asy? —y2up [ 2 V2 1
uy d k u —k /2y2
0/ uZ § = P 10Up + g ke Up

2 2
e B Yang)

wherek] = r;‘—lc% andk), = mk—% and using the same way
we have

Ul —18*y? de = —y 2, (—av2K. 71/2D3u2_|_gk/ D443
0 7%2 ==V U 3¢ 0T g 40 0

hence

2
w(s)=—y2uz,< kidUo+£k/ U242 — 4240 2D g+§k;ao4ug>

ﬁ / 1 ! !
=— <?klal/2y2ué + 6k2a3/20y2u8 — 4kyo y?D3u3

+§kgal/2y2D4ué> -secht [\/g(x - vt)} (29)

we obtain from Egs. (14), (15) and (29) the asymmetric solutions of the kink pair
for cubic and quartic anharmonicity,

2 1
u(&) = oug tanh [\/g(x - ut)] — <%k’1a1/2y2u§ + 6k’zO,:%/zgyzug

2
—4Kso y? D33 + %_kﬁlal/zyzD“ué) . sech I:\/g(x - vt)] (30)

w(§) = Du() (1)

Obviously, wherk; — kj are equal to zero, Egs. (30) and (31) reduce to the sym-
metric solution of a kink pair of the unperturbed system. Because Eqgs. (30) and
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(31) includeo factor, the symmetric shape of the kink pair are broken because of
the anharmonicity, the asymmetric solutions of the kink pair are obtained.

4. ELEMENTARY PROPERTIES OF THE KINK PAIK

In this section we investigate the elementary properties of the above kink
soliton pair, but here we consider only some important physical quantities of the
kink pair due to anharmonic interatomic interactions of the two sublattices.

4.1. Energy of the Kink Pair

Considering the cubic and quartic anharmonicity in the proton and in the
heary-ion sublattices, respectively, the Hamiltonian (7) is rewritten as

1 1 1
H=r / [Em(ut2 + c3u2) + A19(ux) + 5M (W2 + UdW2) + A2p (W)

+V (u) — kwy (u® — ud)] dx (32)
Inserting ux = Ug, Uy = Ug(—v), Wy = Wz = DU, Wy = We(—v) = Dug(—v)
into (32), expression of the energy corresponding to (32) becomes

1
=7 /|: vi+ ¢ ug"‘klg(ué)“‘ MD?(v? +U0)Us+12,0(wé)

+V(u) — kD(u? — ug)ug:|d§

11 1 1
%—/ ~m(v® + )ug + Zkeug + k2U + ZMD?(v? + vd)ug

[ 2 6 2
+= k3D3u + 35 k4D4u +V(u) - kD(uz—uS)u()} dé (33)

where

fugdg-' =/< )3 oud secht [[(x—ut)} = —oauo (34)
/ugldé =/( o*ug sech [\/7(x—ut)] de = f o?uf (35)

2
/V(u)dé = / €o (1— E;) de = 4_‘3{2 co a2 (36)

0

N R

NIQ
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/uzugdg = [ o%u3tani? [[(x—vt)]
x\/gauo sech [\/g(x — vt):| dg = goug (37)

Substituting Egs. (34)—(37) into Eq. (33), thus the energy of the kink soliton pair
due to anharmonicity is

1142 V2

E="Z |:_m(v2 + Cg)al/Zug + ?M DZ(VZ + Ug)al/2ug

Il 3

4 22
— (ki + ksD3)oau§ + ———(kz + kaD*)a®?u3
+45( 1+ ksD)oaug + 105( + kD)

42 4
+Tf ca 24 ékDoug} (38)

Because Eq. (38) contains the polarity factoof the soliton, we can see that the
anharmonic interatomic interactions will increase the energy in the kink soliton
and decrease the energy in the antikink soliton.

4.2. The Momentum and the Effective Mass of the Kink Pair

One can obtain the momentuh of the soliton pair due to anharmonicity
(Cheng, 2000, 2001)

1
P=—- /(muux + Mwwy) dX

= I:’k + Pak = (m + M*)U - Msolv (39)
wherePy is the momentum of the protonic kink soliton,
Pk——T Utuy dX = m*u (40)
m* = | /U3d§|y 1
_ IT [/ugdg —A/(s+8*)d$}
2v2m 8m 2v/2m
= | 0051/2 — E k —akzugot?’/z
_vam 3D3udat? — 8m ok, D*uer (41)

19 318
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m* is the effective mass of the kink in the proton sublattice due to anharmonicity.
P.k is the momentum of the antikink in the heary-ion sublattice,

M
Pk = T wiwy dx = M*vu (42)

D2M
o /Usdély .

DTM ngdg—,\/(sﬂ*)dg}

2v/2D?M 8D%M 2v/2D2M

<
||

3 35
2D2M 8D2M
—‘/—1 5 kiD3uge? — = ok, D*ue (43)

M* is the effective mass of the antikink soliton in the heavy-ion sublattice due to
anharmonicity.

M, = m*"+ M*

2.2 8
= f(m—i— D2M)ue? — 25 ——(m+ D?M)okude

2./2 2
—i(m + D2M)kouda¥? — %(m + D2M)K, D3ufaY/2

—m(m + D?M)ok; D*uga (44)

Mz, is the effective mass of the kink soliton pair due to anharmonicity.
Whenky, ko, k3, andk, are equal to zero, Eqgs. (41), (43), and (44) become.

2/2m
m* = = uda?

45

3 (45)
2J2D2M

M* = 7‘/_3)' uie’? (46)
242

= 3—J|_(m + D*M)udat/? (47)

Equation (45), (46), and (47) are the effective masses of the kink soliton in the
proton, and the antikink soliton in the heavy-ion sublattices and the kink soliton

pair of the unperturbed system, respectively, this result agrees with that of the
harmonic interaction approximation (Xu, 1992).
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From the above Egs. (39)—(44), we can see that the anharmonic interatomic
interactions will decrease the momentum and the effective mass of the kink soliton
in the proton and the antikink soliton in the heavy-ion sublattices, respectively, it
can also be shown that anharmonicity will increase the momentum and the effective
mass of the antikink soliton in the proton and the kink soliton in the heavy-ion
sublattices, respectively.

5. CONCLUSIONS

In summary, we have studied the nonlinear excitations and the motion of a
kink soliton pair in hydrogen-bonded chains with anharmonic interatomic inter-
actions based on the two-component soliton model, using a direct perturbation
method. The asymmetric solutions of the kink soliton pair are obtained because of
anharmonicity, and the energy, the momentum and the effective mass of a kink pair
for cubic and quartic anharmonicity are calculated. Because the influence of the
anharmonic interatomic interactions in the different sublattices, the symmetries of
the shape, the energy, the momentum, and the effective masses of the kink—antikink
soliton are broken, which are in agreement with the experimental observations.
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