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We discuss the nonlinear excitations and the motion of a kink soliton pair in hydrogen-
bonded chains with anharmonic interatomic interactions, based on a two-component
soliton model, using a direct perturbation method. The expression for the asymmetric
solutions of the kink soliton pair is found because of anharmonicity, and the energy, the
momentum and the effective mass of a kink pair for cubic and quartic anharmonicity
are calculated, which are in good agreement with the experimental data.
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1. INTRODUCTION

It is well known that hydrogen-bonded chains consisting of hydrogen bonds
occur in many solid state systems and living systems, such as, for example, solid
alcohol, carbon hydrates, proteins, and ice. In the case of studies of proton transfer
processes in hydrogen-bonded systems, for example, in ice, water, or proteins, the
one-component soliton model for proton transport in hydrogen-bonded molecular
chains has been investigated by a number of authors (Kashimoriet al., 1982;
Xu, 1990). In the normal state of a chain each proton is linked to a heavy ion
(or oxygen atom in ice) by a covalent bond in one case, or a hydrogen bond in
the other. Therefore, there are two kinds of arrangements of hydrogen-bonded
states in these systems, namely the type X---H · · ·X---H · · ·X---H · · ·X---H and
the type H---X · · ·H---X · · ·H---X · · ·H---X, where — indicates a covalent bond,
and· · · represents a hydrogen bond. Obviously the two states should have the
same energy. In such a case it is accepted that the potential energy of the proton
should have the form of a double well with two minima corresponding to the two
equilibrium positions of a proton between two neighboring heavy ions (or oxygen
atoms). In the usual case, the protons in the hydrogen bonds are subject to harmonic
vibration about their equilibrium positions.
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Considering the influence of the motion of the heavy-ion sublattice on the
proton sublattice, the two-component soliton model was suggested by Xu (1992)
and Xu Huang (1995). This model considers that the nonlinear excitations in the
proton and the heavy-ion sublattices are all kinks, kink pairs have symmetric solu-
tions in the harmonic interatomic interactions approximation (Xu, 1992). However
it does not explain the asymmetry observed experimentally between the structures
of L and D defects (Pnevmatikoset al., 1989) and the differences observed exper-
imentally between the mobilities of OH− and H3O+ defects (Nagle and Nogle,
1983), which correspond to kink and antikink solitons in this model.

Because the heavy ion sublattice is not an ideal simplex atomic lattice. The
heavy ion has an internal vibration, as for example the amide-I vibration in the
peptide group ofα-helical protein (Xu, 2000; Xu and Zhou, 1996) and the vibration
of the oxygen ion in ice. In the present paper, taking into account the anharmonic
interatomic interactions of the two sublattices, on the basis of the two-component
soliton model, we discuss the nonlinear excitations due to anharmonicity and can
account for the asymmetry feature in hydrogen-bonded chains. The energy, the
momentum, and the effective mass of a kink pair due to anharmontcity are found,
which agree with the experimental data (Nagle and Nagle, 1983; Pnevmatikos
et al., 1989).

2. KINK SOLITON PAIR

In the continuum model for the two-component soliton of the hydrogen-
bonded molecular chain, the Hamiltonian of the system is (Xu, 1992).

H = 1

l

∫ [
1

2
m
(
u2

t + c2
0u2

x

)+ 1

2
M
(
w2

t + υ2
0w2

x

)+ V(u)− kwx
(
u2− u2

0

)]
dx

(1)
Here,l is the lattices spacing.u(x, t) andw(x, t) are the displacement fields of
the proton (massm) and the heavy ion (massM); respectively.c0 andυ0 are the
characteristic velocities of the proton and the heavy-ion sublattices, respectively.
k is the coupling constant between the two sublattices.

V(u) =∈0

(
1− u2

u2
0

)2

(2)

is the proton potential energy in each hydrogen bond∈0 is the barrier height,u0

is the distance between the central maximum and one of the minima of the double
well. The Euler–Lagrange equations of motion corresponding to Eq. (1) are as
follows.

utt − c2
0uxx − 2k

m
uwx + V ′(u) = 0 (3)
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wtt − υ2
0wxx − 2k

M
uux = 0 (4)

Considering anharmonic interatomic interactions in the two sublattices, gen-
erally,U (ux) andP(wx), which are the interaction potentials in the proton and the
heavy-ion sublattices, respectively, may be written as (Davydov, 1991).

U (ux) = 1

2
mc2

0u2
x − λ1g(ux) (5)

U (wx) = 1

2
Mυ2

0w2
x + λ2ρ(wx) (6)

Whereλ1 andλ2 represent a small constant parameter, andU (ux) andP(wx)
account for anharmonic interatomic interactions in the proton and in the heavy-
ion sublattices, respectively. Replacing the model parameters in Eq. (1) by the
corresponding parameters in Eqs. (5) and (6), we get the Hamiltonian of the an-
harmonicity,

H = 1

l

∫ [
1

2
mu2

t +U (ux)+ V(u)
1

2
Mw2

t + P(wx)− kwx
(
u2− u2

0

)]
dx (7)

The equations of motion corresponding to the Hamiltonian (7) are

mutt −Utt (ux)uxx − 2k

Mυ2
0

uP′(wx)+ V ′(u) = 0 (8)

Mwtt − P′′(wx)wxx − 2k

Mc2
0

uU ′(ux) = 0 (9)

Whenλ1 = 0 andλ2 = 0, Eqs. (8) and (9) reduce to Eqs. (3) and (4), re-
spectively, that is, in the harmonic interatomic interactions approximation, the
symmetric solutions of kink pair in the following form (Xu, 1992).

u = σu0 tanh

[√
α

2
(x − υt)

]
(10)

w = Du (11)

Here,σ = ±1 is the polarity of soliton, and

α = 1

m
(
c2

0 − υ2
) [4 ∈0

u2
0

− 2k2u2
0

M
(
υ2

0 − υ2
)] (12)

D = −
√

2kα−1/2u0

M
(
υ2

0 − υ2
) (13)

Equation (10), (11), and (13) show that, in the caseυ < υ0 andυ < c0, if the
nonlinear excitation in the proton sublattice is the kink (antikink), then the nonlinear
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excitation in the heavy-ion sublattice is the antikink (kink). They propagate alone
the hydrogen-bonded chains in pairs with the same velocity.

3. THE ASYMMETRIC SOLUTIONS OF THE KINK PAIK

When the perturbation is included (λ1 6= 0,λ2 6= 0), it is usually impossible to
obtain on exact analytical solutions of Eqs. (8) and (9), we use a direct perturbation
method, and assume that the solutions of Eqs. (8) and (9) have the following form
(Braun and Vazquez, 1991).

u(ξ ) = u0(ξ )+ λϕ(ξ ) (14)

w(ξ ) = D u(ξ ) (15)

whereξ = x − υt ,u0(ξ ) is the kink of the unperturbed system (λ = 0) in the proton
sublattice. Usingutt = υ2uξξ , uxx = uξξ , U (uξ ) = 1

2mc2
0u2
ξ + λ1g(uξ ), P(wξ ) =

1
2 Mυ2

ξ c
2
ξ + λ2ρ(wξ ), and substituting Eqs. (14) and (15) into Eq. (8), we obtain

−mc2
0γ
−2uξξ − λ1g′′(uξ )uξξ − 2k

Mυ2
0

u P′(wξ )+ V ′(u) = 0 (16)

Multiplying Eq. (16) byuξ and integrating over (−∞, ξ ), we have∫ ξ

−∞
−mc2

0γ
−2uξξ · uξ dξ −

∫ ξ

−∞
λ1g′′(uξ )uξξ · uξ dξ

−
∫ ξ

−∞

2k

Mυ2
0

u P′(wξ ) · uξ dξ +
∫ ξ

−∞

dV(u)

du
uξ dξ = 0 (17)

we let

s =
∫ ξ

−∞
g′′(uξ )uξξ · uξ dξ = uξg

′(uξ )− g(uξ ) (18)

δ =
∫ ξ

−∞

2k

Mυ2
0

u P′(wξ )uξ dξ = k

Mυ2
0

u2P′(wξ ) (19)

and we have ∫ ξ

−∞
−mc2

0γ
−2uξξ · uξ dξ = −1

2
mc2

0γ
−2u2

ξ (20)∫ ξ

−∞

dV(u)

du
uξ dξ = V(u) (21)

Inserting Eqs. (18)—(21) into (17), we obtain

−1

2
mc2

0γ
−2u2

ξ −mc2
0λ(s+ δ∗)+ V(u) = 0 (22)
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here

δ∗ = δ/(mc2
0λ
)
, λ = λ1/

(
mc2

0

)
, γ =

(
1− υ

2

c2
0

)−1/2

,

Substituting Eq. (14) into Eq. (22), and using the expansion

V(u0+ λϕ) ≈ V(u0)+ λV ′(u0)ϕ (23)

and

V(u0) = 1

2
mc2

0γ
−2u

′2
0 (24)

we come to the following first-order equation

γ−2u′0ϕ
′ − γ−2u′′0ϕ = −(s+ δ′) (25)

From Eq. (25) we get

ϕ(ξ ) = u′0

∫ −(s+ δ′)γ 2

u
′2
0

dξ (26)

The result (26) describes a correction to the kink shape due to the anharmonic
interatomic interactions, considering the cubic and quartic anharmonicity in the
proton and in the heavy-ion sublattices, respectively,

λ1g(ux) = 1

6
k1u3

x +
1

12
k2u4

x =
1

6
k1u3

ξ +
1

6
k1u4

ξ (27)

λ2ρ(wx) = 1

6
k3w3

x +
1

12
k4w4

x =
1

6
k3w3

ξ +
1

6
k4w4

ξ (28)

wherek1− k4 are the anharmony parameters, we have

λs = λ1s

mc2
0

= λ1

mc2
0

[uξg
′(uξ )− g(uξ )] = 1

mc2
0

(
1

3
k1u3

ξ +
1

4
k2u4

ξ

)

λϕ(ξ ) = λu′0

∫ −(s+ δ∗)γ 2

u′20
dξ = u′0

∫ −λsγ 2

u′20
dξ + u′0

∫ −λδ∗γ 2

u′20
dξ

where

u′0

∫ −λsγ 2

u′20
dξ = −γ

2u′0
mc2

0

∫
1

u′20

(
1

3
k1u3

ξ +
1

4
k2u′4ξ

)
dξ

≈ −γ
2u′0

mc2
0

∫
1

u′20

(
1

3
k1u′30 +

1

4
k2u′42

)
dξ

= −γ
2u′0

mc2
0

∫ (
1

3
k1u

′
0+

1

4
k2u′0

)
dξ
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∫
u′0 dξ =

∫ √
α

2
σu0 sech2

[√
α

2
(x − υt)

]
dξ = 2σu0∫

u′20 dξ =
∫
α

2
σ 2u2

0 sech4
[√

α

2
(x − υt)

]
dξ = 2

√
2

3
α1/2u2

0

we further get

u′0

∫ −λsγ 2

u′20
dξ = −γ

2u′0
mc2

0

(
2

3
k1σu0+

√
2

6
k2 α

1/2u2
0

)

= −γ 2u′0

(
2

3
k′1σu0+

√
2

6
k′2 α

1/2u2
0

)

wherek′1 = k1

mc2
0

andk′2 = k2

mc2
0
, and using the same way

we have

u′0

∫ −λδ∗γ 2

u′20
dξ = −γ 2u′0

(
−4
√

2k′3α
−1/2D3u2

0+
2

9
k′4σD4u3

0

)
hence

λϕ(ξ ) = −γ 2u′0

(
2

3
k′1σu0+

√
2

6
k′2α

1/2u2
0− 4
√

2k′3α
1/2D3u2

0+
2

9
k′4σD4u3

0

)

= −
(√

2

3
k′1α

1/2γ 2u2
0+

1

6
k′2α

3/2σγ 2u3
0− 4k′3σγ

2D3u3
0

+
√

2

9
k′4α

1/2γ 2D4u4
0

)
· sech2

[√
α

2
(x − vt)

]
(29)

we obtain from Eqs. (14), (15) and (29) the asymmetric solutions of the kink pair
for cubic and quartic anharmonicity,

u(ξ ) = σu0 tanh

[√
α

2
(x − υt)

]
−
(√

2

3
k′1α

1/2γ 2u2
0+

1

6
k′2α

3/2σγ 2u3
0

−4k′3σγ
2D3u3

0+
√

2

9
k′4α

1/2γ 2D4u4
0

)
· sech2

[√
α

2
(x − υt)

]
(30)

w(ξ ) = Du(ξ ) (31)

Obviously, whenk′1− k′4 are equal to zero, Eqs. (30) and (31) reduce to the sym-
metric solution of a kink pair of the unperturbed system. Because Eqs. (30) and
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(31) includeσ factor, the symmetric shape of the kink pair are broken because of
the anharmonicity, the asymmetric solutions of the kink pair are obtained.

4. ELEMENTARY PROPERTIES OF THE KINK PAIK

In this section we investigate the elementary properties of the above kink
soliton pair, but here we consider only some important physical quantities of the
kink pair due to anharmonic interatomic interactions of the two sublattices.

4.1. Energy of the Kink Pair

Considering the cubic and quartic anharmonicity in the proton and in the
heary-ion sublattices, respectively, the Hamiltonian (7) is rewritten as

H = 1

l

∫ [
1

2
m
(
u2

t + c2
0u2

x

)+ λ1g(ux)+ 1

2
M
(
w2

t + υ2
0w2

x

)+ λ2ρ(wx)

+V(u)− kwx
(
u2− u2

0

)]
dx (32)

Inserting ux = uξ , ut = uξ (−υ), wx = wξ = Duξ , wt = wξ (−υ) = Duξ (−υ)
into (32), expression of the energy corresponding to (32) becomes

E = 1

l

∫ [
1

2
m
(
υ2+ c2

0

)
u2
ξ + λ1g(uξ )+ 1

2
MD2

(
υ2+ υ2

0

)
u2
ξ + λ2ρ(wξ )

+V(u)− kD
(
u2− u2

0

)
uξ

]
dξ

≈ 1

l

∫ [
1

2
m
(
υ2+ c2

0

)
u′20 +

1

6
k1u′30 +

1

12
k2u′40 +

1

2
MD2

(
υ2+ υ2

0

)
u′20

+1

6
k3D3u′30 +

1

12
k4D4u′40 + V(u)− kD

(
u2− u2

0

)
u′0

]
dξ (33)

where ∫
u′30 dξ =

∫ (α
2

)3/2
σu3

0 sech6
[√

α

2
(x − υt)

]
dξ = 8

15
σαu3

0 (34)

∫
u′40 dξ =

∫ (α
2

)2
σ 4u4

0 sech8
[√

α

2
(x − υt)

]
dξ = 8

√
2

35
α3/2u4

0 (35)

∫
V(u) dξ =

∫
∈0

(
1− u2

u2
0

)2

dξ = 4
√

2

3
∈0 α

−1/2 (36)
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∫
u2u′0 dξ =

∫
σ 2u2

0 tanh2

[√
α

2
(x − υt)

]
×
√
α

2
σu0 sech2

[√
α

2
(x − υt)

]
dξ = 2

3
σu3

0 (37)

Substituting Eqs. (34)–(37) into Eq. (33), thus the energy of the kink soliton pair
due to anharmonicity is

E = 1

l

[√
2

3
m
(
υ2+ c2

0

)
α1/2u2

0+
√

2

3
M D2

(
v2+ υ2

0

)
α1/2u2

0

+ 4

45
(k1+ k3D3)σαu3

0+
2
√

2

105
(k2+ k4D4)α3/2u4

2

+4
√

2

3
∈ α−1/2+ 4

3
kDσu4

0

]
(38)

Because Eq. (38) contains the polarity factorσ of the soliton, we can see that the
anharmonic interatomic interactions will increase the energy in the kink soliton
and decrease the energy in the antikink soliton.

4.2. The Momentum and the Effective Mass of the Kink Pair

One can obtain the momentumP of the soliton pair due to anharmonicity
(Cheng, 2000, 2001)

P = −1

l

∫
(mutux + Mwtwx) dx

= Pk + Pak = (m∗ + M∗)υ = M∗solυ (39)

wherePk is the momentum of the protonic kink soliton,

Pk = −m

l

∫
utux dx = m∗υ (40)

m∗ = m

l

∫
u2

3 dξ |γ=1

= m

l

[∫
u′20 dξ − λ

∫
(s+ δ∗) dξ

]

= 2
√

2m

3l
u2

0α
1/2− 8m

45l
σk1u3

0α −
2
√

2m

35l
k2u4

0α
3/2

−
√

2m

15l
k′3D3u4

0α
1/2− 8m

315l
σk′4D4u5

0α (41)
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m∗ is the effective mass of the kink in the proton sublattice due to anharmonicity.
Pαk is the momentum of the antikink in the heary-ion sublattice,

Pαk = −M

l

∫
wtwx dx = M∗υ (42)

M∗ = D2M

l

∫
u2

3 dξ |γ=1

= D2M

l

[∫
u′20 dξ − λ

∫
(s+ δ∗) dξ

]

= 2
√

2D2M

3l
u2

0α
1/2− 8D2M

45l
σk1u3

0α −
2
√

2D2M

35l
k2u4

0α
3/2

−
√

2D2M

15l
k′3D3u4

0α
1/2− 8D2M

315l
σk′4D4u5

0α (43)

M∗ is the effective mass of the antikink soliton in the heavy-ion sublattice due to
anharmonicity.

M∗sol = m∗ + M∗

= 2
√

2

3l
(m+ D2M)u2

0α
1/2− 8

45l
(m+ D2M)σk1u3

0α

−2
√

2

35l
(m+ D2M)k2u4

2α
3/2−

√
2

15l
(m+ D2M)k′3D3u4

0α
1/2

− 8

315l
(m+ D2M)σk′4D4u5

0α (44)

M∗sol is the effective mass of the kink soliton pair due to anharmonicity.
Whenk1, k2, k3, andk4 are equal to zero, Eqs. (41), (43), and (44) become.

m∗ = 2
√

2m

3l
u2

0α
1/2 (45)

M∗ = 2
√

2D2M

3l
u2

0α
1/2 (46)

M∗sol =
2
√

2

3l
(m+ D2M)u2

0α
1/2 (47)

Equation (45), (46), and (47) are the effective masses of the kink soliton in the
proton, and the antikink soliton in the heavy-ion sublattices and the kink soliton
pair of the unperturbed system, respectively, this result agrees with that of the
harmonic interaction approximation (Xu, 1992).
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From the above Eqs. (39)–(44), we can see that the anharmonic interatomic
interactions will decrease the momentum and the effective mass of the kink soliton
in the proton and the antikink soliton in the heavy-ion sublattices, respectively, it
can also be shown that anharmonicity will increase the momentum and the effective
mass of the antikink soliton in the proton and the kink soliton in the heavy-ion
sublattices, respectively.

5. CONCLUSIONS

In summary, we have studied the nonlinear excitations and the motion of a
kink soliton pair in hydrogen-bonded chains with anharmonic interatomic inter-
actions based on the two-component soliton model, using a direct perturbation
method. The asymmetric solutions of the kink soliton pair are obtained because of
anharmonicity, and the energy, the momentum and the effective mass of a kink pair
for cubic and quartic anharmonicity are calculated. Because the influence of the
anharmonic interatomic interactions in the different sublattices, the symmetries of
the shape, the energy, the momentum, and the effective masses of the kink–antikink
soliton are broken, which are in agreement with the experimental observations.
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